Roll No.:

322514(22)

APR-MAY

B. E. (Fifth Semester) Examination, 2020

(Old Scheme)

(CSE Engg. Branch)

THEORY of COMPUTATION

Time Allowed: Three hours

Maximum Marks: 80

Minimum Pass Marks: 28

Note: Part (a) of each question is compulsory.

Attempt any two parts from (b), (c) and (d).

Unit-I

1. (a) Explain Finite Automata.

2

7

(b) Explain the difference between non deterministic finite automata and deterministic finite automata.

- (c) (i) Design a DFA which accept binary no. divisible by 5.
 - (ii) Design a DFA which accept substring CAT or RAT over $\Sigma = (A Z)$.

7

(d) Minimize the following DFA by using my hill nerode theorem:

State $/ \sum a b$

 $\rightarrow q_0 \qquad q_1 \qquad q_4$

 (q_2) q_2 q_3

 (q_2) q_0 q_2

 q_4 q_5 q_6

 $(\overline{q_5})$ q_7 q_8

 (q_6) q_7 q_8

 $q_7 \qquad q_7 \qquad q_7$

 q_8 q_8 q_8

Unit-II

2. (a) Give regular expression for the set of string of a, b ending with string abb including null string.
2
322514(22)

[3]

(b) Convert the given Regular Expression into DFA:

$$RE = 10 + (0 + 11) 0^* 1$$

(c) Find the Regular Expression for the given transition system:

(d) Prove that the following language is not Regular.

$$L = \{ 0^i 1^i / i \ge 1 \}$$

Unit-III

3. (a) Define Grammer.

2

7

322514(22)

PTO

[4]	
(b) Explain Chomsky classification of grammer.	7
(c) Convert into GNF:	7
$E \to E + T/T$ $T \to T * F/F$	
$F \to (E)/a$	
(d) $S \rightarrow 0B/1A$ $A \rightarrow 0/0S/1AA$ $B \rightarrow 1/1S/0BB$	
Find LMD and RMD and derivation tree for the string 00110101.	7
Unit-IV	
(a) Define PDA.	2
(b) Design a <i>Pda</i> which accept the language	7
$L = \{ a^n b^{2n} / n \ge 1 \}$	
(c) Construct a PDA equivalent to following CFG.	
$S \to 0 BB$ $B \to 0 S/1 S/0$	K.
And test whether 010^4 is in $N(A)$.	7

(d) Explain Halting problem of Turing Machine.	7
Unit-V	
(a) Define Ackerman's function	2
(b) Explain Turing Model for computation	7
(c) Explain Recursive enumerable language and sets.	7
(d) Explain Recursive functions in detail.	7